Product Name:Diethyl 2,2-dibromomalonate

IUPAC Name:1,3-diethyl 2,2-dibromopropanedioate

CAS:631-22-1
Molecular Formula:C7H10Br2O4
Purity:95%
Catalog Number:CM280370
Molecular Weight:317.96

Packing Unit Available Stock Price($) Quantity
CM280370-100g in stock ƿȡƎ
CM280370-500g in stock ȡƎȺ

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:631-22-1
Molecular Formula:C7H10Br2O4
Melting Point:-
Smiles Code:CCOC(=O)C(Br)(Br)C(=O)OCC
Density:
Catalog Number:CM280370
Molecular Weight:317.96
Boiling Point:259.9°C at 760 mmHg
MDL No:MFCD00015154
Storage:Store at 2-8°C.

Category Infos

Aliphatic Chain Compounds
Aliphatic chain compounds include aliphatic compounds and chain compounds containing other elements or groups. Aliphatic hydrocarbons are hydrocarbons with the basic properties of aliphatic compounds. In aliphatic compounds, carbon atoms are arranged in straight chain, branched chain or cyclic, which are respectively called straight chain aliphatic hydrocarbons, branched chain aliphatic hydrocarbons and alicyclic hydrocarbons. Some cyclic hydrocarbons are different in nature from aromatic hydrocarbons, and are very similar to aliphatic hydrocarbons. Such cyclic hydrocarbons are called alicyclic hydrocarbons. In this way, aliphatic hydrocarbons become a general term for all hydrocarbons except aromatic hydrocarbons. Aliphatic hydrocarbons and their derivatives (including halogenated hydrocarbons) and alicyclic hydrocarbons and their derivatives are collectively referred to as aliphatic compounds.
Lithium-ion Battery Materials
Lithium-ion batteries (Li-ion batteries) are widely used in portable electronic devices, electric vehicles, and renewable energy storage systems due to their high energy density and long cycle life. These batteries are composed of several key materials such as cathode materials, anode materials, electrolyte, separator and current collector, which enable them to operate. Other minor components in Li-ion batteries include binders, additives, and fillers, which improve electrode stability, electrolyte performance, and battery safety. Ongoing research and development focus on improving the energy density, safety, and cost-effectiveness of Li-ion batteries through advancements in materials, including the exploration of new cathode and anode materials, solid-state electrolytes, high-voltage electrolyte additives, and advanced manufacturing techniques.

Related Products