Product Name:7-{1,4-dioxa-8-azaspiro[4.5]decane-8-carbonyl}-3-(2-methoxyethyl)-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one

IUPAC Name:7-{1,4-dioxa-8-azaspiro[4.5]decane-8-carbonyl}-3-(2-methoxyethyl)-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one

CAS:451466-20-9
Molecular Formula:C19H23N3O5S
Purity:95%+
Catalog Number:CM910784
Molecular Weight:405.47

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:451466-20-9
Molecular Formula:C19H23N3O5S
Melting Point:-
Smiles Code:COCCN1C(=S)NC2=CC(=CC=C2C1=O)C(=O)N1CCC2(CC1)OCCO2
Density:
Catalog Number:CM910784
Molecular Weight:405.47
Boiling Point:
MDL No:
Storage:

Category Infos

Piperidines
Piperidine is an azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. Although piperidine is a common organic compound, it is an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.
Piperidine,Piperidine Price
if you want to know the latest news about piperidine and piperidine price, please come to our website and get a quote for free.
Quinazolines
Quinazolines belong to heterocyclic chemistry, also known as 1,3-naphthalenes. The backbone consists of two six-membered aromatic rings fused to each other, with two nitrogen atoms at positions 1 and 3 on the backbone. The presence of these two nitrogen atoms in quinazoline increases its importance in pharmaceutical and biological reactions. Quinazolines and their derivatives are among the most important heterocyclic compounds due to their diverse chemical reactivity and important range of biological activities.
Dioxolanes
Dioxolane is a heterocyclic acetal with the formula (CH2)2O2CH2. It is related to tetrahydrofuran by exchanging an oxygen for the CH2 group. The isomer 1,2-dioxolane (in which the two oxygen centers are adjacent) is a peroxide. 1,3-Dioxolane is used as solvent and comonomer in polyacetal. The dioxolane-type and their hydrogenolysis can provide very valuable partially protected building blocks either for oligosaccharide syntheses or sugar transformations.