Product Name:3-(2-chlorophenyl)-5-methyl-N-(5-{[2-oxo-2-(1,2,3,4-tetrahydroquinolin-1-yl)ethyl]sulfanyl}-1,3,4-thiadiazol-2-yl)-1,2-oxazole-4-carboxamide

IUPAC Name:3-(2-chlorophenyl)-5-methyl-N-(5-{[2-oxo-2-(1,2,3,4-tetrahydroquinolin-1-yl)ethyl]sulfanyl}-1,3,4-thiadiazol-2-yl)-1,2-oxazole-4-carboxamide

CAS:317328-96-4
Molecular Formula:C24H20ClN5O3S2
Purity:95%+
Catalog Number:CM847046
Molecular Weight:526.03

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:317328-96-4
Molecular Formula:C24H20ClN5O3S2
Melting Point:-
Smiles Code:CC1=C(C(=O)NC2=NN=C(SCC(=O)N3CCCC4=C3C=CC=C4)S2)C(=NO1)C1=C(Cl)C=CC=C1
Density:
Catalog Number:CM847046
Molecular Weight:526.03
Boiling Point:
MDL No:
Storage:

Category Infos

Isoxazoles
Isoxazole is a liquid heterocyclic compound C3H3NO isomeric with oxazole and having a penetrating odor like that of pyridine. Isoxazoles belong to an important class of five-membered aromatic heterocycles containing two electronegative heteroatoms, nitrogen and oxygen, in a 1,2-relationship and three regular sp2 carbon atoms. These molecules are found to be key components in various synthetic products in daily use and also present as a pharmacophore essential for biological activity in many drugs and bioactive natural products. In addition, isoxazoles have demonstrated their ability to exhibit hydrogen bond donor/acceptor interactions with a variety of enzymes and receptors.
Tetrahydroquinolines
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, widely found in nature and in a variety of pharmacologically active compounds. Tetrahydroquinoline is an important structure for the synthesis of various biologically active derivatives.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.