Product Name:2-chloro-5-iodo-1H-benzo[d]imidazole
IUPAC Name:2-chloro-5-iodo-1H-1,3-benzodiazole
Product Overview |
2-chloro-5-iodo-1H-benzo[d]imidazole, also known as CIBI, is an organic compound that has a wide range of applications in the scientific research field. It is a heterocyclic system containing an imidazole ring, a benzene ring, and two halogens. This compound has been studied extensively for its unique properties and has been found to be useful for a variety of scientific research applications. |
Synthesis and Application |
The synthesis of 2-chloro-5-iodo-1H-benzo[d]imidazole has been studied extensively, and a variety of methods have been developed. The most common method involves the reaction of 2-chloro-5-iodobenzaldehyde with 1,3-diaminopropane in the presence of a base. This reaction produces 2-chloro-5-iodo-1H-benzo[d]imidazole in high yields and is relatively simple to perform. Other methods, such as the reaction of 2-chloro-5-iodobenzaldehyde with hydrazine hydrate, have also been developed, but these are less commonly used. 2-chloro-5-iodo-1H-benzo[d]imidazole has a wide range of applications in the scientific research field. It is widely used as a fluorescent label for the detection and imaging of biomolecules, as it has strong fluorescence properties. It has also been used as a reagent for the synthesis of a variety of heterocyclic compounds, including quinolines and indoles. Additionally, it has been used as a catalyst for a variety of organic reactions, such as the Heck reaction. |
Future Directions |
There are a variety of potential future directions for the use of 2-chloro-5-iodo-1H-benzo[d]imidazole. One potential direction is the development of new synthetic methods for the production of 2-chloro-5-iodo-1H-benzo[d]imidazole. Additionally, further research into the biochemical and physiological effects of 2-chloro-5-iodo-1H-benzo[d]imidazole may lead to new applications in the field of medicine. Additionally, further research into the fluorescence properties of 2-chloro-5-iodo-1H-benzo[d]imidazole may lead to new methods for the detection and imaging of biomolecules. Finally, further research into the reactivity of 2-chloro-5-iodo-1H-benzo[d]imidazole may lead to new methods for the synthesis of heterocyclic compounds. |