Product Name:4-[4-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)piperazin-1-yl]-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine

IUPAC Name:4-[4-(5-cyclopropyl-1,3,4-thiadiazol-2-yl)piperazin-1-yl]-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine

CAS:2415570-89-5
Molecular Formula:C18H22N8S
Purity:95%+
Catalog Number:CM877043
Molecular Weight:382.49

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:2415570-89-5
Molecular Formula:C18H22N8S
Melting Point:-
Smiles Code:CC1=NN(C(C)=C1)C1=NC=NC(=C1)N1CCN(CC1)C1=NN=C(S1)C1CC1
Density:
Catalog Number:CM877043
Molecular Weight:382.49
Boiling Point:
MDL No:
Storage:

Category Infos

Pyrazoles
Pyrazoles are organic compounds of the general formula C3H3N2H. It is a five-membered heterocycle consisting of three carbon atoms and two adjacent nitrogen atoms. As an H-bond-donating heterocycle, pyrazole has been used as a more lipophilic and metabolically more stable bioisomer of phenol. Pyrazoles have attracted more and more attention due to their broad spectrum of action and strong efficacy.
Pyrazone
Custom pyrazone for customers from all over the world are our main business.
Piperazines
Piperazine is an organic compound consisting of a six-membered ring containing two nitrogen atoms in opposite positions in the ring. The chemical formula of piperazine is C4H10N2, and it is an important pharmaceutical intermediate. Pyrimidines and piperazines are known to be the backbone of many bulk compounds and important core structures for approved drugs; studies have shown that combining a pyridine ring with a piperazine moiety within a single structural framework enhances biological activity.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.