Product Name:N-{3-[(2,1,3-benzothiadiazol-4-yl)amino]quinoxalin-2-yl}-1-methyl-1H-pyrazole-4-sulfonamide

IUPAC Name:N-{3-[(2,1,3-benzothiadiazol-4-yl)amino]quinoxalin-2-yl}-1-methyl-1H-pyrazole-4-sulfonamide

CAS:1798530-27-4
Molecular Formula:C18H14N8O2S2
Purity:95%+
Catalog Number:CM1005969
Molecular Weight:438.48

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:1798530-27-4
Molecular Formula:C18H14N8O2S2
Melting Point:-
Smiles Code:CN1C=C(C=N1)S(=O)(=O)NC1=C(NC2=CC=CC3=NSN=C23)N=C2C=CC=CC2=N1
Density:
Catalog Number:CM1005969
Molecular Weight:438.48
Boiling Point:
MDL No:
Storage:

Category Infos

Pyrazoles
Pyrazoles are organic compounds of the general formula C3H3N2H. It is a five-membered heterocycle consisting of three carbon atoms and two adjacent nitrogen atoms. As an H-bond-donating heterocycle, pyrazole has been used as a more lipophilic and metabolically more stable bioisomer of phenol. Pyrazoles have attracted more and more attention due to their broad spectrum of action and strong efficacy.
Pyrazone
Custom pyrazone for customers from all over the world are our main business.
Quinoxalines
Quinoxalines, also known as benzopyrazines, are heterocyclic compounds containing a ring complex consisting of a benzene ring and a pyrazine ring. It has isomerism with other naphthalene compounds such as quinazoline, phthalazine, cinnamine, etc. Fusion N-heterocyclic compounds are widely used as valuable entities for the expansion of important pharmacological agents and are considered to be an advantageous scaffold material. Among the numerous fused N-heterocyclic compounds, cinnoline, quinoxaline and quinazoline are important pharmacological agents. In medicinal chemistry, these N-heterocyclic compounds have a wide range of biological properties and can be used as synthetic intermediates, potential drug candidates and chemical probes.
Benzothiadiazoles
The two N atoms in Benzothiadiazole could possibly form intermolecular hydrogen bonding, leading to a more planar backbone. Benzothiadiazole is a strong electron-accepting molecular fragment. By fusing it with thiazole donor-acceptor dyes, near-infrared fluorescence was created. The benzothiadiazole ring is a useful n-type building block for designing electron-transport materials for organic and polymer light-emitting diodes (LEDs). Arene- and heteroarene-fused thiadiazoles have also found use in the design of low-band-gap materials for the construction of organic field-effect transmitters (OFETs), as stable organic radicals, and as one or two photon-absorbing materials for the design of nonlinear near-infrared (NIR) dyes. Benzothiadiazoles acting as the electron-accepting cores have been incorporated into dendrimer-type light-harvesting materials.

Related Products