Product Name:2-({[2-(4-chlorophenyl)-5-methyl-1,3-oxazol-4-yl]methyl}sulfanyl)-6-(trifluoromethyl)pyrimidin-4-ol

IUPAC Name:2-({[2-(4-chlorophenyl)-5-methyl-1,3-oxazol-4-yl]methyl}sulfanyl)-6-(trifluoromethyl)pyrimidin-4-ol

CAS:1040635-40-2
Molecular Formula:C16H11ClF3N3O2S
Purity:95%+
Catalog Number:CM807410
Molecular Weight:401.79

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:1040635-40-2
Molecular Formula:C16H11ClF3N3O2S
Melting Point:-
Smiles Code:CC1=C(CSC2=NC(O)=CC(=N2)C(F)(F)F)N=C(O1)C1=CC=C(Cl)C=C1
Density:
Catalog Number:CM807410
Molecular Weight:401.79
Boiling Point:
MDL No:
Storage:

Category Infos

Oxazoles
Oxazoles are heterocyclic aromatic compounds containing one oxygen atom and one nitrogen atom, separated by a carbon atom. The presence of two heteroatoms (oxygen and nitrogen) provides possible interactions (hydrogen, hydrophobic, van der Waals or dipole bonds) with a wide range of receptors and enzymes. Oxazole rings are valuable heterocyclic scaffolds for the design of novel therapeutics with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic, and antidepressant properties due to their wide range of targets and biological activities.
Pyrimidines
Pyrimidine, also known as 1,3-diazobenzene, is a heterocyclic compound with the chemical formula C4H4N2. Pyrimidine is formed by substituting 2 nitrogen atoms for 2 carbons in the meta-position of benzene. It is a diazine and retains its aromaticity. Derivatives of pyrimidine widely exist in organic macromolecular nucleic acids, and many drugs also contain pyrimidine rings. In nucleic acids, three nucleobases are pyrimidine derivatives: cytosine, thymine and uracil. There are a variety of pyrimidine-containing drugs on the market, most of which are kinase inhibitors.
Fluorinated Compounds
Fluorine is the most electronegative element in the periodic table, and the fluorine atom has a small atomic radius, so fluorine-containing organic compounds have many wonderful properties. For example, the introduction of fluorine atoms or fluorine-containing groups into drug molecules can improve the permeability to cell membranes, metabolic stability and bioavailability; in addition, the introduction of fluorine atoms will improve the lipid solubility of the compound and promote its absorption in the body. The speed of delivery changes the physiological effect. In the field of medicinal chemistry, the introduction of fluorine atoms into organic molecules is an important direction for the development of new anticancer drugs, antitumor drugs, antiviral agents, anti-inflammatory drugs, and central nervous system drugs.